Microbes in the News

Elusive microbe that consumes ethane found under the sea

Stephen W. Ragsdale                3/27/2019

https://www.nature.com/articles/d41586-019-00842-2

 

Summary: In anoxic regions of the ocean a microbe is able to oxidize ethane with the help of its neighbors. Several other species are able to break down methane, propane, and butane. In environments which contain oxygen, using these molecules is thermodynamically favorable. In the absence of oxygen, it is much less favorable, and needs some assistance from other microbes. There is a syntrophy (beneficial to both sides) relationship between the newly discovered ethane eating microbe Candidatus Argoarcheaum ethanivorans and Desulfosarcina which reduces sulfate to sulfide.

Connections: This article discussed some different ways microbes obtain energy. The newly discovered microbe is a methanotroph. Coupling the reaction of one microbe to allow for another microbe to use a unique energy source is not something we covered in class and seems to be a novel idea. We have discussed how the electron tower can predict what microbes use for energy in different environments, however it is cool to learn there are microbes that don’t seem to follow the pattern.

Critical Analysis: It is easy to forget that microbes work together and that each species doesn’t live in a vacuum. The idea that species can transfer molecules and electrons to each other’s benefit is a new idea for me. I was also curious about how we could harness the power of these microbes to break down similar molecular compounds that may cause harm in the environment. I think this story is scientifically accurate because the author explained the controversy between two ideas and provided evidence from research journals to explain each idea. The author talks more about the microbes that break down methane, butane and propane because more is known about them, however it did make it difficult to tell if the author was describing the new microbe or the properties of one already well known.

Question: Can these microbes be used to clean up chemicals and how can we harness the coupled power of microbial metabolism?